• About
  • Advertise
  • Privacy & Policy
  • Contact
HK Businesswire
  • Home
  • News
    • All
    • Business
    • Politics
    • PR Newswire
    • Science
    • World
    Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

    Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

    DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

    DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

    Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

    Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

    E-Home Household Service Holdings Limited has won bids for multiple cleaning services and appliance repair projects, while also introducing AI robots for trial operation in new projects

    JPMorgan Maintains Positive Outlook on China Banks Sector with Multiple ‘Overweight’ Ratings

    JPMorgan Maintains Positive Outlook on China Banks Sector with Multiple ‘Overweight’ Ratings

    FEHD to take disciplinary sanctions

    FEHD to take disciplinary sanctions

    Trending Tags

    • Trump Inauguration
    • United Stated
    • White House
    • Market Stories
    • Election Results
  • PR Newswire
  • Business
  • World
  • Entertainment
  • Sports
  • Tech
    • All
    • Apps
    • Gadget
    • Mobile
    • Startup

    Deloitte: Over 40% of Family Offices Prioritise Tech Amid Digital Transformation

    PwC: AI-Exposed Jobs See Surge in Demand, Pay, and Productivity

    PwC: AI-Exposed Jobs See Surge in Demand, Pay, and Productivity

    Hong Kong Student Criticised for Using Outsourced AI Project to Win STEM Awards

    Xiaomi SU7 Ultra Becomes Fastest Mass-Produced EV on Nürburgring Nordschleife

    MPF at 25: PwC and HKRSA Urge Bold Reform for Hong Kong’s Retirement System

    CrowdStrike Shares Dip Despite Strong Q1 Earnings Amid Soft Revenue Guidance

    Trending Tags

    • Nintendo Switch
    • CES 2017
    • Playstation 4 Pro
    • Mark Zuckerberg
  • Feature
No Result
View All Result
  • Home
  • News
    • All
    • Business
    • Politics
    • PR Newswire
    • Science
    • World
    Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

    Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

    DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

    DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

    Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

    Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

    E-Home Household Service Holdings Limited has won bids for multiple cleaning services and appliance repair projects, while also introducing AI robots for trial operation in new projects

    JPMorgan Maintains Positive Outlook on China Banks Sector with Multiple ‘Overweight’ Ratings

    JPMorgan Maintains Positive Outlook on China Banks Sector with Multiple ‘Overweight’ Ratings

    FEHD to take disciplinary sanctions

    FEHD to take disciplinary sanctions

    Trending Tags

    • Trump Inauguration
    • United Stated
    • White House
    • Market Stories
    • Election Results
  • PR Newswire
  • Business
  • World
  • Entertainment
  • Sports
  • Tech
    • All
    • Apps
    • Gadget
    • Mobile
    • Startup

    Deloitte: Over 40% of Family Offices Prioritise Tech Amid Digital Transformation

    PwC: AI-Exposed Jobs See Surge in Demand, Pay, and Productivity

    PwC: AI-Exposed Jobs See Surge in Demand, Pay, and Productivity

    Hong Kong Student Criticised for Using Outsourced AI Project to Win STEM Awards

    Xiaomi SU7 Ultra Becomes Fastest Mass-Produced EV on Nürburgring Nordschleife

    MPF at 25: PwC and HKRSA Urge Bold Reform for Hong Kong’s Retirement System

    CrowdStrike Shares Dip Despite Strong Q1 Earnings Amid Soft Revenue Guidance

    Trending Tags

    • Nintendo Switch
    • CES 2017
    • Playstation 4 Pro
    • Mark Zuckerberg
  • Feature
No Result
View All Result
HK Businesswire
No Result
View All Result
Home News Science

MIT engineers print synthetic “metamaterials” that are both strong and stretchy

David Lee by David Lee
23 April 2025
in Science
0
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter

In metamaterials design, the name of the game has long been “stronger is better.”Metamaterials are synthetic materials with microscopic structures that give the overall material exceptional properties. A huge focus has been in designing metamaterials that are stronger and stiffer than their conventional counterparts. But there’s a trade-off: The stiffer a material, the less flexible it is.MIT engineers have now found a way to fabricate a metamaterial that is both strong and stretchy. The base material is typically highly rigid and brittle, but it is printed in precise, intricate patterns that form a structure that is both strong and flexible.The key to the new material’s dual properties is a combination of stiff microscopic struts and a softer woven architecture. This microscopic “double network,” which is printed using a plexiglass-like polymer, produced a material that could stretch over four times its size without fully breaking. In comparison, the polymer in other forms has little to no stretch and shatters easily once cracked.The researchers say the new double-network design can be applied to other materials, for instance to fabricate stretchy ceramics, glass, and metals. Such tough yet bendy materials could be made into tear-resistant textiles, flexible semiconductors, electronic chip packaging, and durable yet compliant scaffolds on which to grow cells for tissue repair.“We are opening up this new territory for metamaterials,” says Carlos Portela, the Robert N. Noyce Career Development Associate Professor at MIT. “You could print a double-network metal or ceramic, and you could get a lot of these benefits, in that it would take more energy to break them, and they would be significantly more stretchable.”Portela and his colleagues report their findings today in the journal Nature Materials. His MIT co-authors include first author James Utama Surjadi as well as Bastien Aymon and Molly Carton.Inspired gelAlong with other research groups, Portela and his colleagues have typically designed metamaterials by printing or nanofabricating microscopic lattices using conventional polymers similar to plexiglass and ceramic. The specific pattern, or architecture, that they print can impart exceptional strength and impact resistance to the resulting metamaterial.Several years ago, Portela was curious whether a metamaterial could be made from an inherently stiff material, but be patterned in a way that would turn it into a much softer, stretchier version.“We realized that the field of metamaterials has not really tried to make an impact in the soft matter realm,” he says. “So far, we’ve all been looking for the stiffest and strongest materials possible.”Instead, he looked for a way to synthesize softer, stretchier metamaterials. Rather than printing microscopic struts and trusses, similar to those of conventional lattice-based metamaterials, he and his team made an architecture of interwoven springs, or coils. They found that, while the material they used was itself stiff like plexiglass, the resulting woven metamaterial was soft and springy, like rubber.“They were stretchy, but too soft and compliant,” Portela recalls.In looking for ways to bulk up their softer metamaterial, the team found inspiration in an entirely different material: hydrogel. Hydrogels are soft, stretchy, Jell-O-like materials that are composed of mostly water and a bit of polymer structure. Researchers including groups at MIT have devised ways to make hydrogels that are both soft and stretchy, and also tough. They do so by combining polymer networks with very different properties, such as a network of molecules that is naturally stiff,  which gets chemically cross-linked with another molecular network that is inherently soft. Portela and his colleagues wondered whether such a double-network design could be adapted to metamaterials.“That was our ‘aha’ moment,” Portela says. “We thought: Can we get inspiration from these hydrogels to create a metamaterial with similar stiff and stretchy properties?”Strut and weaveFor their new study, the team fabricated a metamaterial by combining two microscopic architectures. The first is a rigid, grid-like scaffold of struts and trusses. The second is a pattern of coils that weave around each strut and truss. Both networks are made from the same acrylic plastic and are printed in one go, using a high-precision, laser-based printing technique called two-photon lithography.The researchers printed samples of the new double-network-inspired metamaterial, each measuring in size from several square microns to several square millimeters. They put the material through a series of stress tests, in which they attached either end of the sample to a specialized nanomechanical press and measured the force it took to pull the material apart. They also recorded high-resolution videos to observe the locations and ways in which the material stretched and tore as it was pulled apart.They found their new double-network design was able stretch three times its own length, which also happened to be 10 times farther compared to a conventional lattice-patterned metamaterial printed with the same acrylic plastic. Portela says the new material’s stretchy resistance comes from the interactions between the material’s rigid struts and the messier, coiled weave as the material is stressed and pulled.“Think of this woven network as a mess of spaghetti tangled around a lattice. As we break the monolithic lattice network, those broken parts come along for the ride, and now all this spaghetti gets entangled with the lattice pieces,” Portela explains. “That promotes more entanglement between woven fibers, which means you have more friction and more energy dissipation.”In other words, the softer structure wound throughout the material’s rigid lattice takes on more stress thanks to multiple knots or entanglements promoted by the cracked struts. As this stress spreads unevenly through the material, an initial crack is unlikely to go straight through and quickly tear the material. What’s more, the team found that if they introduced strategic holes, or “defects,” in the metamaterial, they could further dissipate any stress that the material undergoes, making it even stretchier and more resistant to tearing apart.“You might think this makes the material worse,” says study co-author Surjadi. “But we saw once we started adding defects, we doubled the amount of stretch we were able to do, and tripled the amount of energy that we dissipated. That gives us a material that’s both stiff and tough, which is usually a contradiction.”The team has developed a computational framework that can help engineers estimate how a metamaterial will perform given the pattern of its stiff and stretchy networks. They envision such a blueprint will be useful in designing tear-proof textiles and fabrics.“We also want to try this approach on more brittle materials, to give them multifunctionality,” Portela says. “So far we’ve talked of mechanical properties, but what if we could also make them conductive, or responsive to temperature? For that, the two networks could be made from different polymers, that respond to temperature in different ways, so that a fabric can open its pores or become more compliant when it’s warm and can be more rigid when it’s cold. That’s something we can explore now.”This research was supported, in part, by the U.S. National Science Foundation, and the MIT MechE MathWorks Seed Fund.

Tags: Science
David Lee

David Lee

Read More

A brief history of the global economy, through the lens of a single barge

A brief history of the global economy, through the lens of a single barge

17 June 2025
The Ecosystem Dynamics That Can Make or Break an Invasion

The Ecosystem Dynamics That Can Make or Break an Invasion

16 June 2025
  • Trending
  • Comments
  • Latest

Hong Kong Student Criticised for Using Outsourced AI Project to Win STEM Awards

16 June 2025

Macau Enforces 183-Day Residency Rule for 2025 Wealth Partaking Scheme

29 May 2025

Xiaomi SU7 Ultra Becomes Fastest Mass-Produced EV on Nürburgring Nordschleife

11 June 2025
Over 150 firms hoping to list in Hong Kong: HKEX

Over 150 firms hoping to list in Hong Kong: HKEX

28 May 2025
Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

17 June 2025
DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

17 June 2025
Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

17 June 2025

E-Home Household Service Holdings Limited has won bids for multiple cleaning services and appliance repair projects, while also introducing AI robots for trial operation in new projects

17 June 2025

Recent News

Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

Goldman Sachs: China Property Sales Improve as Policy Easing Narrows Regional Gaps

17 June 2025
DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

DFRobot Unihiker K10 Supports Innovation at 9th Belt and Road Youth Maker Camp in Chengdu

17 June 2025
Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

Brain Navi achieves U.S. FDA approval for neurosurgical robot NaoTrac

17 June 2025

E-Home Household Service Holdings Limited has won bids for multiple cleaning services and appliance repair projects, while also introducing AI robots for trial operation in new projects

17 June 2025
HK Businesswire

Stay ahead with the latest insights on Hong Kong’s economy, finance, and investments. From market trends to policy updates, we bring you in-depth analysis and expert opinions.

📩 Subscribe to our newsletter for exclusive updates.
📍 Follow us on social media for real-time news.
📧 Contact us: info@hongkong-invest.com

Follow Us

  • About
  • Advertise
  • Privacy & Policy
  • Contact

© 2025 by HKBusinesswire.com

No Result
View All Result

© 2025 by HKBusinesswire.com